|
The (J/Psi) meson or psion 〔http://books.google.com.au/books?id=8AD3GDoVaMkC&pg=PA462&dq=psion+meson+-wikipedia&hl=en&sa=X&ei=y40kVKjHOI-A8QXpioC4Bw&ved=0CC8Q6AEwAA#v=onepage&q=psion%20meson%20-wikipedia&f=false retrieved 25 September 2014〕 is a subatomic particle, a flavor-neutral meson consisting of a charm quark and a charm antiquark. Mesons formed by a bound state of a charm quark and a charm anti-quark are generally known as "charmonium". The is the first excited state of charmonium (i.e. the form of the charmonium with the second-smallest rest mass). The has a rest mass of , and a mean lifetime of . This lifetime was about a thousand〔 〕 times longer than expected. Its discovery was made independently by two research groups, one at the Stanford Linear Accelerator Center, headed by Burton Richter, and one at the Brookhaven National Laboratory, headed by Samuel Ting of MIT. They discovered they had actually found the same particle, and both announced their discoveries on 11 November 1974. The importance of this discovery is highlighted by the fact that the subsequent, rapid changes in high-energy physics at the time have become collectively known as the "November Revolution". Richter and Ting were rewarded for their shared discovery with the 1976 Nobel Prize in Physics. == Background to discovery == The background to the discovery of the was both theoretical and experimental. In the 1960s, the first quark models of elementary particle physics were proposed, which said that protons, neutrons and all other baryons, and also all mesons, are made from three kinds of fractionally-charged particles, the "quarks", that come in three different types or "flavors", called ''up'', ''down'', and ''strange''. Despite the impressive ability of quark models to bring order to the "elementary particle zoo", their status was considered something like mathematical fiction at the time, a simple artifact of deeper physical reasons. Starting in 1969, deep inelastic scattering experiments at SLAC revealed surprising experimental evidence for particles inside of protons. Whether these were quarks or something else was not known at first. Many experiments were needed to fully identify the properties of the subprotonic components. To a first approximation, they were indeed the already-described quarks. On the theoretical front, gauge theories with broken symmetry became the first fully viable contenders for explaining the weak interaction after Gerardus 't Hooft discovered in 1971 how to calculate with them beyond tree level. The first experimental evidence for these electroweak unification theories was the discovery of the weak neutral current in 1973. Gauge theories with quarks became a viable contender for the strong interaction in 1973 when the concept of asymptotic freedom was identified. However, a naive mixture of electroweak theory and the quark model led to calculations about known decay modes that contradicted observation: in particular, it predicted Z boson-mediated ''flavor-changing'' decays of a strange quark into a down quark, which were not observed. A 1970 idea of Sheldon Glashow, John Iliopoulos, and Luciano Maiani, known as the GIM mechanism, showed that the flavor-changing decays would be eliminated if there were a fourth quark, ''charm'', that paired with the strange quark. This work led, by the summer of 1974, to theoretical predictions of what a charm/anticharm meson would be like. These predictions were ignored. The work of Richter and Ting was done for other reasons, mostly to explore new energy regimes. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「J/psi meson」の詳細全文を読む スポンサード リンク
|